Электронные ударные ezDrums.

Рассказать в:

Автор - Влад Каменев
Опубликовано 13.08.2010.
Участник Конкурса "Поздравь Кота по-человечески 2010"

Электронные ударные ezDrums.

Электронные ударные могут быть полезны всем тем, кто играет, или хочет играть на ударных дома или в любом другом помещении, где уровень звука, производимый от полноценной ударной установки, является неприемлемым. Вот я и решил поделиться своей разработкой электронных ударных, которую недавно собрал под заказ. 

Немного теории:
Педы для электронной ударной установки обычно изготовляют из кевлара или резины для минимума акустического шума, а датчиками в такой установке, в простейшем случае, являются обычные пьезоэлементы. Для того, чтобы корректно "воспринять" сигнал с таких датчиков нам потребуется пиковый детектор. 
Пиковый детектор позволяет с высокой точностью оценивать максимальное (амплитудное) значение напряжения или тока. Если форма напряжения известна - меандр или синусоида, то в этом случае используют обычный вольтметр переменного тока, умножая полученный результат на постоянный коэффициент (соответственно, 2 и ?2). Однако если форма напряжения сложна, например, сигнал от пьезоизлучателя в момент удара, то без пикового детектора не обойтись, так как сила удара влияет непосредственно на амплитудное значение уровня сигнала поступающего с датчика. Простейшая схема пикового детектора:

Электронные ударные ezDrums.

Емкость конденсатора С выбирается такой, чтобы время заряда было значительно меньше периода наибольшей частоты входного сигнала. 
Однако для правильной работы ударной установки просто пикового детектора недостаточно, так как сигнал "одного удара" может представлять собой последовательность импульсов, а не один импульс как в "идеале". Длинна импульсов также может изменяется в широких пределах. Для того чтобы правильно оценить количество ударов по педу, за определенное время и распознать одиночный удар, необходим аппаратный или софтовый триггер с определенным временем восстановления, то есть в момент срабатывания триггера мы разрешаем воспроизведение соответствующего звука и запрещаем повторное воспроизведение на время восстановления триггера:

Электронные ударные ezDrums.

Однако, применяя пиковый детектор и триггер, я все равно не смог получить четкого воспроизведения ударов в соответствии с ударами по педу, получалось так - если время восстановления триггера невелико, то иногда все же проскакивали ложные повторные удары, а если увеличить время восстановления, то при быстрых ритмах наоборот некоторые удары не воспроизводились. Причина такой работы в следующем, при одиночных ударах сигнал с пьезоэлемента длится достаточно долгое время под действием резонанса педа, при быстрых же ритмах мы "обрываем резонанс" последующими ударами по педу и сигнал одного удара получается коротким. Также длительность импульса варьируется, из-за "медлительности" АЦП. 
Решение было найдено в алгоритме адаптивного времени восстановления триггера. По умолчанию триггер настраивается на минимальное время восстановления, а при отпускании триггера программа проверяет уровень сигнала и если сигнал еще есть, то программа динамически продлевает время восстановления триггера на определенную величину. Триггер не отпустит до тех пор, пока сигнал на входе не будет равен нулю, даже если время блокировки уже вышло. Работа адаптивного восстановления триггера в реальных условиях:

Электронные ударные ezDrums.

Красные перевернутые импульсы это сигнал после пикового детектора, а черная линия - срабатывание триггера. Как видно из графика время восстановления триггера варьируется в зависимости от длины импульса поступающего после пикового детектора. 
Применение всего вышеописанного дало безотказный результат, удары воспринимаются очень четко, никаких пропусков или ложных повторных срабатываний. 

Реализация, схема, печатная плата:
Пьезодатчики для снятия сигнала я применил серии ЗП-2, при использовании других датчиков, возможно, потребуется подкорректировать коэффициент усиления пикового детектора, сам пиковый детектор собран на ОУ типа LM324/LMX324/LT1014, но можно применить и другие счетверенные ОУ с возможностью однополярного питания. В качестве МК - C8051F320 производства Silabs. 
Собственно схема:

Электронные ударные ezDrums.

Как видно из схемы, восемь каналов, каждый со своим пиковым детектором, подсоединены к МК который в свою очередь связывается с ПК посредством USB. 
Два порта у МК остались свободными, один из них выведен на разъем для возможных расширений, но программно пока никак не задействован. 

Печатная плата изготавливается на одно/двухстороннем текстолите. При применении двустороннего текстолита второй слой полностью оставляется и соединяется с землей устройства для минимизации паразитных наводок на схему. Все элементы на печатной плате которые не имеют обозначений - перемычки, кроме сериальных сопротивлений номиналом 1-2кОм подключенных к порту Р0, их можно не распаивать. Размеры печатной платы - 43х63мм.

Электронные ударные ezDrums.

Софт:
Программа довольно проста в обращении и позволяет регулировать громкость, и выбирать WAV файл для каждого канала. 
Также в качестве дополнительных возможностей - независимое регулирование чувствительности и коэффициента сжатия громкости воспроизведения, в зависимости от силы удара. 
Вывод звука осуществляется средствами DirectSound. В планах реализовать MIDI, ASIO.

Электронные ударные ezDrums.

Системные требования:
Windows XP*/Seven х86/64, 1.0Ghz CPU или выше, звуковая карта совместимая с DirectX.
*для Windows XP необходимо загрузить и установить .NET Framework 3.5 

Сборка, настройка:
После распайки всех элементов, проверяем правильность монтажа и отсутствие замыканий/обрывов печатных проводников, далее подключаем к ПК и проверяем наличие напряжения +3.3В на 6 выводе МК, и +5В на 4 выводе обоих ОУ, также необходимо проконтролировать напряжение на выходе пиковых детекторов, оно должно быть около нуля. Если все в норме, то можно приступать к прошивке МК, прошить данный МК можно вот такимпростым программатором. Устанавливаем драйвера, после чего устройство должно корректно определиться. 
Если все в норме, запускаем программу, назначаем каждому каналу свой WAV файл и при желании переименовываем каналы как необходимо. Далее открываем настройки, клацнув по кнопке Settings, и устанавливаем порог для каждого канала таким образом, чтобы не было ложных срабатываний от наводок и помех. Сжатие устанавливается индивидуально в зависимости от реализации ударной установки и места размещения датчиков, у меня получилось оптимально на слух сжатие - 1.2. 

На этом, пожалуй, и все. К сожалению, я не могу привести фотографий, так как девайс уже отдан.

Файлы:
Печатная плата в формате Proteus.
Прошивка МК.
Софт и дрова для ПК.

Вопросы, как обычно, складываем тут.



Раздел: [Устройства на микроконтроллерах]

Сохрани статью в:

Оставь свой комментарий или вопрос:


Наше сообщество в VK, а ты с нами? Присоединяйся!!!
Тясячи схем в категориях:
-> Прочее
-> Измерительная техника
-> Приборы
-> Схемыэлектрооборудования
-> Источники питания (прочие полезные конструкции)
-> Теоретические материалы
-> Справочные материалы
-> Устройства на микроконтроллерах
-> Зарядные устройства (для батареек)
-> Зарядные устройства (для авто)
-> Преобразователи напряжения (инверторы)
-> Все для кулера (Вентилятора)
-> Радиомикрофоны, жучки
-> Металоискатели
-> Регуляторы мощности
-> Охрана (Сигнализация)
-> Управление освещением
-> Таймеры (влажность, давление)
-> Трансиверы и радиостанции
-> Конструкции для дома
-> Конструкции простой сложности
-> Конкурс на лучшую конструкцию на микроконтроллерах
-> Конструкции средней сложности
-> Стабилизаторы
-> Усилители мощности низкой частоты (на транзисторах)
-> Блоки питания (импульсные)
-> Усилители мощности высокой частоты
-> Приспособления для пайки и конструирования плат
-> Термометры
-> Борт. сеть
-> Измерительные приборы (тахометр, вольтметр итд)
-> Железо
-> Паяльники ипаяльные станции
-> Радиопередатчики
-> Вспомогательные устройства
-> Телевизионная техника
-> Регуляторы тембра, громкости
-> Блоки питания (лабораторные)
-> Усилители мощности низкой частоты (на микросхемах)
-> Другие устройства для усилителей
-> Cветовое оформление новогодней ёлки или праздничного зала
-> Глушилки
-> Телефонные жуки
-> Инфракрасная техника
-> Медицинская техника
-> Телефония
-> Для животного мира
-> Конструируем усилители
-> Антенны и усилители к ним
-> Звонки
-> Электронные игрушки
-> Усилители мощности низкой частоты (ламповые)
-> Управление двигателями (питание от однофазной сети)
-> Программаторы микроконтроллеров
-> Сверлилки
-> Изучаем микроконтроллеры
-> Радиоприемники
-> Сигнализации
-> Сотовая связь
-> USB-устройства
-> Блоки питания (трансформаторные)
-> Радиостанции простые в изготовлении
-> Источники питания (для усилителей)
-> Прочеее
-> защита от короткого замыкания (электронные предохранители)
-> Зарядные устройства (для радиостанций)
-> Мигалки
-> Cварочное оборудование
-> Кодовые электронные замки
-> Блоки питания (бестрансформаторные)
-> Часы
-> Управление поворотниками
-> Зажигание
-> Управление водой (насосы для скважин или колодцев, полив растений)
-> Моделирование
-> Блоки управления стеклоочистителями
-> Предварительные усилители
-> Защита от перегрузки и перегрева
-> Динамики
-> Ремонт бытовой техники
-> Дистанционное управление компьютером
-> Акустические микрофоны и преобразователи
-> Спутниковое ТВ
-> Gsm антенны, примочки, усилители, ретрансляторы.
-> Пищалки
-> Роботы
-> Ретрансляторы
-> Паяльники и паяльные станции
-> Звуковые сигнализаторы
-> Рули и джойстики
-> Схемы электрооборудования
-> Все для "кулера" (Вентилятора)
-> Работа с BGA микросхемами
-> Фильтры
-> Сабвуферы
Рейтинг@Mail.ru