Регулируемый аналог динистора

Рассказать в:

                                                                            РЕГУЛИРУЕМЫЙ АНАЛОГ ДИНИСТОРА

Серийно выпускаемые динисторы по электрическим параметрам не всегда отвечают творческим интересам радио­любителей-конструкторов Нет, например, динисторов с напряжением вклю­чения 5...10 и 200...400 В. Все дииисторы имеют значительный разброс значения этого классификационного параметра, который к тому же зависит еще от тем­пературы окружающей среды Кроме то­го. они рассчитаны на сравнительно малый коммутируемый ток (менее 0.2 А), а значит, небольшую комму­тируемую мощность. Исключено плав­ное регулирование напряжения включения, что ограничивает область при­менения динисторов. Все это заставляет радиолюбителей прибегать к созданию аналогов динисторов с желаемыми па­раметрами.

Поиском такого аналога дииистора длительное время занимался и я. Исходным был вариант аналога, состав­ленный из стабилитрона Д814Д и тринистора КУ202Н (рис i).

Регулируемый аналог динистора

 Пока напряжение на аналоге меньше напряжения стабилизации стабилитрона, аналог закрыт и ток через него не течет. При достижении напряжения стабилизации стабилитрона он открывается сам, от крывает триннстор и аналог в целом. В результате в цепи, в которую аналог включен, появляется ток. Значение это­го тока определяется свойствами тринистора н сопротивлением нрузки. Ис­пользуя тринисторы серии КУ202 с буквенными индексами Б, В, Н и один и тот же стабилитрон Д814Д, произведено 32 измерения тока и напряжения вклю­чения аналога дииистора. Анализ показывает. что среднее значение тока включения аналога равно примерно 7 мА. а напряжения включения — 14,5±1 В. Разброс напряжении вклю­чения объясняется неодинаковостью со­противления управляющих р-н перехо­дов используемых трннисторов.

Напряжение включения uвкл, такого аналога можно рассчитать по упрощенной формуле: uвкл=uст+u где uст — напряжение стабилизации стабилитрона, uуэ — падение наприжения на управляющем переходе тринистора.

При изменении температуры трини­стора падение напряжения на его управляющем переходе тоже изменя­ется, но незначительно. Это приводит к некоторому изменению напряжения включения аналога. Например, для три­нистора КУ202Н при изменении темпе­ратуры его корпуса от 0 до 50 °С на­пряжение включения изменялось в пре­делах 0.3...0,4 % по отношению к значе­нию этого параметра при темперагуре 25 С.

Далее был исследован регулируемый аналог дииистора с переменным резистором r1 в цепи управляющего элек­трода тринистора (рис. 2).

Регулируемый аналог динистораРегулируемый аналог динистораРегулируемый аналог динистораРегулируемый аналог динистора

 Семейство вольт - амперных характеристик такого варианта аналога показано на рис. 3, их пусковой участок — на рис 4. а зависимость напряжения включения от сопротивления резистора — на рис 5. Как показал анализ напряжение вклю­чения такого аналога прямо пропор­ционально сопротивлению резистора. Это напряжение можно рассчитать по формуле uвкл.р=uст+uуэ+iвкл.уэ*r1  где uвкл р — напряжение включения ре -гулируемого аналога, iвкл у э — ток включения регулируемого аналога ди­иистора по управляющему электроду.

Такой аналог свободен практически от всех недостатков динисторов, кро­ме температурной нестабильности Как известно, при повышении температуры тринистора его ток включения умень­шается. В регулируемом аналоге это приводит к уменьшению напряжения включения и тем значительнее, чем больше сопротивление резистора. По­этому стремиться к большому повышению напряжения включения перемен­ным резистором не cneдуeт, чтобы не ухудшать температурную стабильность работы аналога.

Как показали эксперименты, эта не­стабильность небольшая. Так, для ана­лога с тринистором КУ202Н при изме­нении температуры его корпуса в пределах 10...30 °С напряжение включения изменялось, с резистором i кОм — на ±1.8 %. при 2 кОм — на ±2,6 %, при 3 кОм — на ±3 %, при 4 кОм — на ±3,8 % . Увеличение сопротивления на i кОм приводило к повышению напря­жения порога включения регулируемого аналога в среднем на 20% по сравнению с напряжением включения исход­ного аналога динистора. Следовательно, средняя точность напряжения вклю­чения регулируемого аналога луч­ше 5 %.

Температурная нестабильность ана­лога с триннстором КУ101Г меньше, что объясняется относительно малым током включения (0,8...1,5 мА). Напри­мер. при таком же изменении температуры и резисторе сопротивлением 10, 20, 30 и 40 кОм температурная нестабильность была соответственно  +-0.6%, +-07.%, +-0.8%,+-1%. Уве­личение сопротивления резистора на каждые 10 кОм повышало уровень напряжения включения аналога на 24 % по сравнению с напряжением аналога без резистора. Таким образом, аналог с тринистором КУ101Г обладает высо­кой точностью напряжения включе­ния — его температурная нестабиль­ность менее i %, а с тринистором КУ202Н — несколько худшей точностью напряжения включений (в этом случае сопротивление резистора ri должно быть 4,7 кОм).

При обеспечении теплового контакта между тринистором и стабилитроном температурная нестабильность аналога может быть еще меньшей, поскольку у стабилитронов с напряжением стабили­зации больше 8 В температурный коэф­фициент напряжения стабилизации по­ложителен, а температурный коэффи­циент напряжения открывания тринисторов отрицателен.

Повысить термосгабильность регу­лируемого аналога дииистора с мощным тринистором можно включением переменного резистора в анодную цепь маломощного тринистора (рис. б). 

Регулируемый аналог динистора

Ре­зистор r1 ограничивает ток управляю­щего электрода тринистора vsi и повышает напряжение включения его на 12%. А переменный резистор r2 по­зволяет регулировать напряжение включения трниистора vs2.

Улучшение температурной стабиль­ности такого варианта аналога обьясняется тем, что с увеличением сопро­тивления резистора r2 уменьшается ток включения аналога но управляю­щему электроду и увеличивается ток включения ею по аноду. А так как с изменением температуры в этом случае ток управляющего электрода уменьша­ется меньше и что суммарный ток вклю­чения аналога увеличивается, то для эквивалентного повышения напряжения включения аналога нужно меньшее соп­ротивление резистора r2 - это и созда­ет благоприятные условия для повы­шения температурной стабильности аналога.

Чтобы реализовать термостабиль­ность такого аналога, ток открывания тринистора vs2 должен быть 2...3 мА — больше тока открывания тринистора vs1, чтобы его температурные измене­ния не влияли на работу аналога. Эксперимент показал, что напряжение включения термостабильного аналога при изменении температуры его элемен­тов от 20 до 70 °С практически не из­менилось.

Недостаток такого варианта аналога динистора — сравнительно узкие пре­делы регулировки напряжения включе­ния переменным резистором r2. Они тем уже, чем больше ток включения тринистора vs2. Поэтому, чтобы не ухуд­шать термостабильность аналога, надо использовать в нем тринисторы с воз­можно меньшим током включения. Диа­пазон регулировки напряжения включе­ния аналога можно расширить путем применения стабилитронов с различным напряжением стабилизации.

Регулируемые аналоги динистора найдут применение в автоматике и теле­механике, релаксационных генераторах, электронных регуляторах, пороговых и многих других радиотехнических устрой­ствах

М МАРЬЯШ   пос. Коропец Тернопольской обл.


Раздел: [Регуляторы мощности]

Сохрани статью в:

Оставь свой комментарий или вопрос:


Наше сообщество в VK, а ты с нами? Присоединяйся!!!
Тясячи схем в категориях:
-> Прочее
-> Измерительная техника
-> Приборы
-> Схемыэлектрооборудования
-> Источники питания (прочие полезные конструкции)
-> Теоретические материалы
-> Справочные материалы
-> Устройства на микроконтроллерах
-> Зарядные устройства (для батареек)
-> Зарядные устройства (для авто)
-> Преобразователи напряжения (инверторы)
-> Все для кулера (Вентилятора)
-> Радиомикрофоны, жучки
-> Металоискатели
-> Регуляторы мощности
-> Охрана (Сигнализация)
-> Управление освещением
-> Таймеры (влажность, давление)
-> Трансиверы и радиостанции
-> Конструкции для дома
-> Конструкции простой сложности
-> Конкурс на лучшую конструкцию на микроконтроллерах
-> Конструкции средней сложности
-> Стабилизаторы
-> Усилители мощности низкой частоты (на транзисторах)
-> Блоки питания (импульсные)
-> Усилители мощности высокой частоты
-> Приспособления для пайки и конструирования плат
-> Термометры
-> Борт. сеть
-> Измерительные приборы (тахометр, вольтметр итд)
-> Железо
-> Паяльники ипаяльные станции
-> Радиопередатчики
-> Вспомогательные устройства
-> Телевизионная техника
-> Регуляторы тембра, громкости
-> Блоки питания (лабораторные)
-> Усилители мощности низкой частоты (на микросхемах)
-> Другие устройства для усилителей
-> Cветовое оформление новогодней ёлки или праздничного зала
-> Глушилки
-> Телефонные жуки
-> Инфракрасная техника
-> Медицинская техника
-> Телефония
-> Для животного мира
-> Конструируем усилители
-> Антенны и усилители к ним
-> Звонки
-> Электронные игрушки
-> Усилители мощности низкой частоты (ламповые)
-> Управление двигателями (питание от однофазной сети)
-> Программаторы микроконтроллеров
-> Сверлилки
-> Изучаем микроконтроллеры
-> Радиоприемники
-> Сигнализации
-> Сотовая связь
-> USB-устройства
-> Блоки питания (трансформаторные)
-> Радиостанции простые в изготовлении
-> Источники питания (для усилителей)
-> Прочеее
-> защита от короткого замыкания (электронные предохранители)
-> Зарядные устройства (для радиостанций)
-> Мигалки
-> Cварочное оборудование
-> Кодовые электронные замки
-> Блоки питания (бестрансформаторные)
-> Часы
-> Управление поворотниками
-> Зажигание
-> Управление водой (насосы для скважин или колодцев, полив растений)
-> Моделирование
-> Блоки управления стеклоочистителями
-> Предварительные усилители
-> Защита от перегрузки и перегрева
-> Динамики
-> Ремонт бытовой техники
-> Дистанционное управление компьютером
-> Акустические микрофоны и преобразователи
-> Спутниковое ТВ
-> Gsm антенны, примочки, усилители, ретрансляторы.
-> Пищалки
-> Роботы
-> Ретрансляторы
-> Паяльники и паяльные станции
-> Звуковые сигнализаторы
-> Рули и джойстики
-> Схемы электрооборудования
-> Все для "кулера" (Вентилятора)
-> Работа с BGA микросхемами
-> Фильтры
-> Сабвуферы
Рейтинг@Mail.ru