Ступенчатое включение мощной нагрузки

Рассказать в:

Устройство предназначено для постепенной подачи сетевого напряжения в активную нагрузку.
Из опыта известно, что наиболее часто мощные лампы и нагреватели выходят из строя в момент включения. Это связано с тем, что нагревательная нить лампы в холодном состоянии имеет сопротивление более чем в 10 раз меньшее, чем при прогреве. Из-за чего возможен бросок тока при подаче напряжения. Если же включение случайно попало на момент действия в сети максимальной амплитуды напряжения, возникает импульсная перегрузка.
Приведенная на рис1 схема облегчает режим работы нагрузки, снижая броски тока за счет постепенного (в течение 4 с) увеличения амплитуды подаваемого напряжения. Это позволяет значительно продлить жизнь ламп, кроме того, снижается уровень сетевых помех в момент включения. Электрическая схема работает следующим образом. Электронным симисторным коммутатором VS1 управляет генератор на однопереходном транзисторе VT1.
Ступенчатое включение мощной нагрузки
Рис. 1. Электрическая схема
Генератор синхронизирован с частотой сети, так как он питается пульсирующим напряжением, рис. 2
В зависимости от величины резисторов R3 и R4 время заряда С1 может меняться, т. е. меняется угол открывания оптронного симистора. Как только напряжение на конденсаторе достигнет порога открывания VT1, С1 быстро разрядится через ограничительный резистор R1 и светодиод оптрона.
Ступенчатое включение мощной нагрузки
Pис. 2. Форма напряжения
Для открывания симистора при любой окружающей температуре, через светодиод должен проходить ток не менее 80...100 мА. Использование однопереходного транзистора позволяет иметь источник питания схемы управления небольшой мощности, так как необходимая для открывания симистора энергия накапливается на конденсаторе С1 и отдается в течение короткого импульса.
При включении, в начальный момент, транзистор VT2 заперт (примерно в течение 4 с), так же, как и VT3. От номинала резистора R3 зависит, какое минимальное начальное напряжение будет подано в нагрузку А1. Как только С2 зарядится, появится ток через VT3, что приведет к открыванию VT2, — резистор R3 будет закорочен переходом эмиттер-коллектор транзистора. Это уменьшит время заряда С1, т. е. транзистор VT1 сформирует импульс для открывания VS1 раньше. Номинал резистора R4 подбираем так, чтобы при этом было максимальное напряжение в нагрузке.
Так как в схеме облегчается режим работы симистора VS1, устройство позволяет коммутировать суммарную мощность нагрузки до 10000 Вт.
В схеме применены резисторы МЛТ, а конденсаторы С1 — К73-9, С2, СЗ — К52-1Б на 63 В. Оптронный коммутатор устанавливается на радиатор (при использовании схемы с нагрузкой до 500...1000 Вт в нем нет необходимости).
Топология печатной платы приведена на рис. 3.
Ступенчатое включение мощной нагрузки
Рис3. Топология печатной платы и расположение элементов
Раздел: [Регуляторы мощности]

Сохрани статью в:

Оставь свой комментарий или вопрос:


Наше сообщество в VK, а ты с нами? Присоединяйся!!!
Тясячи схем в категориях:
-> Прочее
-> Измерительная техника
-> Приборы
-> Схемыэлектрооборудования
-> Источники питания (прочие полезные конструкции)
-> Теоретические материалы
-> Справочные материалы
-> Устройства на микроконтроллерах
-> Зарядные устройства (для батареек)
-> Зарядные устройства (для авто)
-> Преобразователи напряжения (инверторы)
-> Все для кулера (Вентилятора)
-> Радиомикрофоны, жучки
-> Металоискатели
-> Регуляторы мощности
-> Охрана (Сигнализация)
-> Управление освещением
-> Таймеры (влажность, давление)
-> Трансиверы и радиостанции
-> Конструкции для дома
-> Конструкции простой сложности
-> Конкурс на лучшую конструкцию на микроконтроллерах
-> Конструкции средней сложности
-> Стабилизаторы
-> Усилители мощности низкой частоты (на транзисторах)
-> Блоки питания (импульсные)
-> Усилители мощности высокой частоты
-> Приспособления для пайки и конструирования плат
-> Термометры
-> Борт. сеть
-> Измерительные приборы (тахометр, вольтметр итд)
-> Железо
-> Паяльники ипаяльные станции
-> Радиопередатчики
-> Вспомогательные устройства
-> Телевизионная техника
-> Регуляторы тембра, громкости
-> Блоки питания (лабораторные)
-> Усилители мощности низкой частоты (на микросхемах)
-> Другие устройства для усилителей
-> Cветовое оформление новогодней ёлки или праздничного зала
-> Глушилки
-> Телефонные жуки
-> Инфракрасная техника
-> Медицинская техника
-> Телефония
-> Для животного мира
-> Конструируем усилители
-> Антенны и усилители к ним
-> Звонки
-> Электронные игрушки
-> Усилители мощности низкой частоты (ламповые)
-> Управление двигателями (питание от однофазной сети)
-> Программаторы микроконтроллеров
-> Сверлилки
-> Изучаем микроконтроллеры
-> Радиоприемники
-> Сигнализации
-> Сотовая связь
-> USB-устройства
-> Блоки питания (трансформаторные)
-> Радиостанции простые в изготовлении
-> Источники питания (для усилителей)
-> Прочеее
-> защита от короткого замыкания (электронные предохранители)
-> Зарядные устройства (для радиостанций)
-> Мигалки
-> Cварочное оборудование
-> Кодовые электронные замки
-> Блоки питания (бестрансформаторные)
-> Часы
-> Управление поворотниками
-> Зажигание
-> Управление водой (насосы для скважин или колодцев, полив растений)
-> Моделирование
-> Блоки управления стеклоочистителями
-> Предварительные усилители
-> Защита от перегрузки и перегрева
-> Динамики
-> Ремонт бытовой техники
-> Дистанционное управление компьютером
-> Акустические микрофоны и преобразователи
-> Спутниковое ТВ
-> Gsm антенны, примочки, усилители, ретрансляторы.
-> Пищалки
-> Роботы
-> Ретрансляторы
-> Паяльники и паяльные станции
-> Звуковые сигнализаторы
-> Рули и джойстики
-> Схемы электрооборудования
-> Все для "кулера" (Вентилятора)
-> Работа с BGA микросхемами
-> Фильтры
-> Сабвуферы
Рейтинг@Mail.ru